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Abstract A system of impulsive differential equations is considered as a model of
two populations competing for a pulsed inputting nutrient with Beddington–DeAngelis
growth rates. Criteria are derived for the coexistence or non-coexistence of the com-
peting species.

Keywords Competition · Beddington–DeAngelis growth rate · Chemostat ·
Pulsed input

1 Introduction and the model

As well known, countless organisms live in seasonally or diurnally forced environ-
ment, in which the populations obtain food, so the effects of this forcing may be quite
profound. Recently, many papers studied chemostat model with variations in the sup-
ply of nutrients or the washout. Chemostat with periodic inputs are studied in [1–5],
those with periodic washout rate in [6,7], and those with periodic input and washout in
[8]. A chemostat is a common laboratory apparatus used to culture microorganisms.
Sterile growth medium enters the chemostat at a constant rate; the volume within
the chemostat is held constant by allowing excess medium (and microbes) to flow
out through a siphon. In this paper, we want to study a chemostat with periodically
variable pulsed input. We inoculate this chemostat with two bacteria that compete, in
the medium, an abundance of all necessary nutrients but one. This last nutrient is the
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limiting substrate; it is pulsed in periodically. The specific growth rates of bacteria are
Beddington–DeAngelis type [9]. Without loss of generality, we assume that the input
occur variable at k-times’ (k ∈ N ) in period T . The model takes the form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d S

dT
= −DS − µ1

δ1

S P1

(A1 + S + B1 P1)
− µ

δ2

S P2

(A2 + S + B2 P2)
,

d H1

dT
= µ1S P1

A1 + S + B1 P1
− D P1,

d H2

dT
= µ2S P2

A2 + S + B2 P2
− D P2,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

T �= nτ+τi
D ,

�S( nτ
D ) = pi S0, pi = τi − τi−1,

i = 1, 2, . . . , k; n ∈ N .

T = nτ+τi
D ,

(1.1)

where τ is the period of the impulsive effect and τ0 = 0 < τ1 < τ2 < · · · < τk = τ

are the k-times of the impulsive effects in per period τ . The state variables S, P1 and P2
represent the concentration of limiting substrate, two predators. D is the dilution rate;
µ1 and µ2 are the uptake constances of the two predators; δi (i = 1, 2) are the yield
of predator per unit mass of prey; S

Ai +S+Bi Pi
(i = 1, 2) are Beddington–DeAngelis

growth rates; τ
D is the period of the pulsing; τ S0 is the amount of limiting substrate

pulsed each τ
D . DS0 units of substrate are added, on average, per unit of time. n ∈ N , N

is the set of all non-negative integers.
The theory of impulsive differential equation appears as a natural description of

several real processes subject to certain perturbations whose duration is negligible
in comparison with the duration of the process. Recently, equations of this kind are
found in a almost every domain of applied sciences. Numerous examples are given in
Bainov’s and his collaborator’s books [10,11]. Some impulsive differential equations
have been recently introduced in population dynamics in relation to: impulsive birth
[12], impulsive vaccination [13,14], chemotherapeutic treatment of disease [15] and
population ecology [16,17].

There are advantages in analyzing dimensionless equations. We treat the reciprocal
of the dilution rate as natural measure of time:

x ≡ S
S0

, y ≡ P1
δ1 S0

, z ≡ P2
δ2 S0

, t ≡ DT .

After some algebra, this yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= − x − m1xy

a1 + x + b1 y
− m2xz

a2 + z + b2z
,

dy

dt
= m1xy

a1 + x + b1 y
−y,

dz

dt
= m2xz

a2 + x + b2z
−z,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

t �= nτ + τi , (i=1, 2, . . . , k)

x((nτ + τi )
+) = x(nτ + τi ) + pi , t = nτ + τi , (i=1, 2, . . . , k),

(1.2)
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with

m1 = µ1

D
, a1 = A1

S0
, b1 = B1δ1;

m2 = µ2

D
, a2 = A2

S0
, b2 = B2δ2.

The organizations of the paper are as follows. In the next section, we consider the
submodel consisting of nutrient and one microbial population. Here, we obtain criteria
for extinction of the microbes as well as criteria for the existence and global stability
of a positive periodic solution. In Sect. 3, we obtain criteria for the extinction of the
second microbial population, as well as criteria for the existence of a positive periodic
solution. Furthermore, we discuss the local stability of the positive periodic solution.
Based on the local stability, by topological degree theory we show that the consid-
ered full chemostat system has a strictly positive periodic solution which is globally
asymptotically stable. Finally, a brief discussion on the biological implications and
simulating results are contained in Sect. 5.

2 Behavior of a predator subsystem

In the absence of the predator z, system (1.2) reduces to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx

dt
= −x − m1xy

a1 + x + b1 y
,

dy

dt
= m1xy

a1 + x + b1 y
− y,

⎫
⎪⎬

⎪⎭
t �= nτ + τi , (i = 1, 2, . . . , k)

x((nτ + τi )
+) = x(nτ + τi ) + pi , t = nτ + τi , (i = 1, 2, . . . , k),

(2.1)

This nonlinear system has simple periodic solutions. For our purpose, we present
these solutions in this sections.

If we add the first and second equations of the system (2.1), we have d(x+y)
dt =

−(x+y). If we take variable changes s = x+y then the system (2.1) can be rewritten as

{ ds

dt
= −s, t �= nτ + τi , (i = 1, 2, . . . , k)

s(t+) = s(t) + pi , s(0) > 0, t = nτ + τi , (i = 1, 2, . . . , k).
(2.2)

For the system (2.2), we have the following Lemma 3.1.

Lemma 2.1 The subsystem (2.2) has a positive periodic solution s̃(t) and for every
solution s(t) of (2.2) we have |s(t) − s̃(t)| → 0 as t → ∞, where

⎧
⎨

⎩

s̃(t) = s+
i exp(−(t−nτ − τi−1)), t ∈(nτ+τi−1, nτ+τi],

s̃(0) = s+
0 =

∑k
j=1 p j exp(−τ + τ j )

1 − exp(−τ)
, si = s+

i−1 exp(−pi ). i =1, 2, . . . , k.

(2.3)
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Proof Suppose s(t, s0) is a solution of Eq. (2.2), with initial condition s0 ∈ [0,+∞).
We have

s(t, s0) = s((nτ + τi−1)
+) exp(−(t − nτ − τi ), t ∈ (nτ + τi−1, nτ + τi ],

s(t+) = s(t) + pi , t = nτ + τi ,
(2.4)

for i = 1, 2, . . . , k. We introduce a function U (s0) = s(t, y0). For (2.4), we have the
following properties:

(i) 0 < s(t, s0) < ∞, t ∈ (0,∞) is piecewise continuous function;
(ii) The function U (s0) = s(t, s0), s0 ∈ (0,∞) is a increasing function.

By direct calculating, we know that the solution s̃(t) in (2.3) is a τ -period solution of
Eq. (2.2); according to (ii), we can see that the solution s̃(t) is a unique period solution
of (2.2). The multiplier µs of s̃(t) is

µs := exp(−τ) < 1,

we can see that s̃(t) (t ∈ (0,∞)) is globally asymptotically stable. We complete the
proof. ��

By the Lemma 2.1, the following lemma is obvious.

Lemma 2.2 Let (x(t), y(t)) be any solution of system (2.1) with initial condition
x(0) ≥ 0, y(0) > 0, then limt→∞ |x(t) + y(t) − s̃(t)| = 0.

The Lemma 2.2 says that the periodic solution s̃(t) is uniquely invariant manifold
of the system (2.1).

Theorem 2.1 For the system (2.1), we denote

m∗
1 := τ

(∫ τ

0
s̃(l)

a1+s̃(l)dl
)−1

.

(1) If m1 < m∗
1, then the system (2.1) has a unique globally asymptotically stable

positive τ−periodic solution (xe(t), ye(t)), where

xe(t) = 1, ye(t) = 0;

(2) If m1 > m∗
1, then the system (2.1) has a unique globally asymptotically stable pos-

itive τ -periodic solution (xs(t), ys(t)) and the τ -periodic solution (xe(t), ye(t))
is unstable. The τ -period positive solution ys(t) satisfies

1

τ

∫ τ

0

m1(s̃(l) − ys(l))

a1 + s̃(l) − ys(l) + b1 ys(l)
dl = 1.
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Proof By Lemma 2.1, we can consider the system (2.1) in its stable invariant manifold
s̃(t), that is

dy

dt
= m1(s̃(t) − y)y

a1 + s̃(t) − y + b1 y
− y,

0 ≤ y0 ≤ s̃(0).

(2.5)

Now we prove periodic impulsive Eq. (2.5) has globally stable periodic solution
ys(t). We have the following properties:

(1) y(t) = y(t, y0), t ∈ [0,∞) is continuous function;
(2) y(t) = y(t, 0) = 0, t ∈ [0,∞) is a solution;
(3) y(t) = y(t, s̃(0)) = s̃(t), t ∈ [0, τ1].

Suppose y(t, y0) is a solution of Eq. (2.5), with initial condition y0 ∈ [0, s̃(0)]. We
have

F(y(t, y0)) =
∫ t

0

m1(s̃(l) − y(l, y0))

a1 + s̃(l) − y(l, y0) + b1 y(l, y0)
dl − t,

y(nτ) = y0, t ∈ (nτ, (n + 1)τ ].
(2.6)

For (2.6), we have the following properties:

(i) The function G(y0) = y(t, y0), y0 ∈ (0, s̃(0)] is a increasing function;
(ii) 0 < y(t, y0) < s̃(t), t ∈ (0,∞) is continuous function;

(iii) y(t, 0) = 0, t ∈ (0,∞) is a solution .

The periodic solutions of (2.5) satisfy the following equation

y0 = y0 exp

(∫ τ

0

(
m1(s̃(l) − y(l, y0))

a1 + (s̃(l) − y(l, y0)) + b1 y(l, y0)
− 1

)

dl

)

. (2.7)

By (i), (ii) and (iii), we know that if 1
τ

∫ τ

0
m1 s̃(l)

a1+s̃(l)dl > 1, the Eq. (2.6) has a unique
solution in (0, s̃(0)]; otherwise, it has no solution in (0, s̃(0)].

If m1 < m∗
1, it is obvious that

y(t) ≤ y(0) exp

((
1

τ

∫ τ

0

m1s̃(l)

a1 + s̃(l)
dl − 1

)

t

)

exp

(∫ t

0
p1(l)dl

)

. (2.8)

where p1(t) = m1 s̃(t)
a1+s̃(t) − 1

τ

∫ τ

0
m1 s̃(l)

a1+s̃(l)dl; note that 1
τ

∫ τ

0 p1(l)dl = 0 and hence that

p1(t) is τ -periodic piecewise continuous function. By 1
τ

∫ τ

0
m1 s̃(l)

a1+s̃(l)dl − 1 < 0, we
obtain that y(t) tends exponentially to zero as t → +∞. Considering system (2.2),
we have x(t) = s(t) − y(t). By Lemma 2.2, we have limt→∞ |x(t) − s̃(t)| = 0. If
m1 < m∗

1, then the Eq. (2.5) has stable periodic solution ye(t) = 0. By Lemma 2.2,
we have limt→∞ |x(t) − s̃(t)| = 0. We have proved in (1).
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If m1 > m∗
1, then Eq. (2.5) has uniquely positive periodic solution. We denote this

positive periodic solution

ys(t) = y(t, y∗
0 ), xs(t) = s̃(t) − y(t, y∗

0 ),

which satisfies the following equation

∫ τ

0

m1(s̃(l) − ys(l))dl

a1 + (s̃(l) − ys(l)) + b1 y(l, y0)
= τ. (2.9)

We denote y∗
0 := ys(0).

For proving the period solution ys(t), we define a function F(y(t, y0)) : (t, y0) →
R, ∈ [0,∞) × [0, s̃(0)] as following:

F(y(t, y0)) =
∫ t

0

m1(s̃(l) − y(l, y0))

a1 + (s̃(l) − y(l, y0)) + b1 y(l, y0)
dl − t.

Noticing Eq. (2.5), we have

F(y(τ, y0)) = ln

(
y(τ, y0)

y0

)

, y0 ∈ (0, s̃(0)]. (2.10)

It is obvious that F(y(nτ, y∗
0 ))) = 0.

For any y0 ∈ (0, s̃(0)), by the theorem 2.10 [7] on the differentiability of the solu-
tions on the initial values, ∂y(t,y0)

∂y0
exists. Furthermore, ∂y(t,y0)

∂y0
≥ 0, t ∈ (0,∞) is hold

(otherwise, there exist t0 > 0, 0 < y1 < y2 < s̃(0) such that y(t0, y1) = y(t0, y2),
that is a contradiction with the different flows of system (2.5) not to intersect). And
we can have s̃(l) > y(l, y0)), for l ∈ [0, τ ]. So we obtain that

d(F(y(τ, y0)))

dy0
< 0. (2.11)

So F(y(τ, y0)), y0 ∈ [0, s̃(0)] is monotonously decreasing continuous function.
Now we set 0 < ε < y∗

0 < s̃(0). According to (2.11), we have that

ln y(τ, y0) − ln y0 < 0, i f y∗
0 < y0 < s̃(0),

ln y(τ, y0) − ln y0 = 0, i f y0 = y∗
0 ,

ln y(τ, y0) − ln y0 > 0, i f ε < y0 < y∗
0 . (2.12)

Furthermore, we obtain the following equations

y0 > y(τ, y0) > · · · > y(nτ, y0) > y∗
0 , i f y∗

0 < y0 ≤ s̃(0),

y0 < y(τ, y0) < · · · < y(nτ, y0) < y∗
0 , i f ε ≤ y0 < y∗

0 . (2.13)
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Set y0 ∈ (0, s̃(0)]. According to (2), we suppose that

lim
n→∞ y(nτ, y0) = a.

We shall prove that the solution y(t, a) is τ -periodic. We note that the functions
yn(t) = y(t + nτ, y0), due to the τ -periodicity of Eq. (2.5), are also its solutions
and yn(0) → a as n → ∞. By the continuous dependence of the solutions on the
initial values we have that y(τ, a) = limn→∞ yn(τ ) = a. Hence the solution y(t, a)

is τ -periodic. The periodic solution y(t, y∗
0 ) is unique, so a = y∗

0 .
Let ε > 0 be given. By the Theorem 2.9 [7] on the continuous dependence of the

solutions on the initial values, there exists a δ > 0 such that

|y(t, y0) − y(t, y∗
0 )| < ε,

if |y0 − y∗
0 | < δ and 0 ≤ t ≤ τ . Choose n1 > 0 so that |y(nτ, y0) − y∗

0 | < δ for
n > n1. Then |y(t, y0) − y(t, y∗

0 )| < ε for t > nτ which proves that

lim
n→∞ |y(t, y0) − y(t, y∗

0 )| = 0, y0 ∈ (0, s̃(0)].

For system (2.1), by Lemma 2.2 we obtain that for any solution (x(t), y(t)) with initial
condition x(0) ≥ 0, y(0) > 0, |x − xs | → 0, |y − ys | → 0 as t → ∞.

From the τ -period solution ys being globally asymptotically stable, we can obtain
that the multiplier µ of ys , which satisfies

µ = exp

(

−
∫ τ

0

(
m1(a1 + b1 ys(l) + b1xs(l))ys(l)

(a1 + xs(l) + b1 ys(l))2 dl

))

< 1. (2.14)

where we have used (2.7). This conclusion will be used in the Sect. 4. We have proved
(2). ��

3 Coexistence of two predators

Suppose (s̃ − ys, ys) and (s̃ − zs, zs) are positive τ -periodic solutions of system (2.1)
and the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx

dt
= −x − m2xz

a2 + x + b2z
,

dz

dt
= m2xz

a2 + x + b2z
− z,

⎫
⎪⎬

⎪⎭
t �= nτ + τi , (i = 1, 2, . . . , k)

x((nτ + τi )
+) = x(nτ + τi ) + pi , t = nτ + τi , (i = 1, 2, . . . , k),

(3.1)

respectively, i.e., m1 > m∗
1 and m2 > m∗

2 := τ
(∫ τ

0
s̃(l)

a2+s̃(l)dl
)−1

. Then (s̃ − ys, ys, 0)

and (s̃−zs, 0, zs) are nonnegative τ -periodic solutions of system (1.2). First we discuss
the stability of (s̃ − ys, ys, 0).
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Theorem 3.1 If (s̃ − ys, ys) is a positive asymptotically stable τ -periodic solution of
system (2.1), then (s̃ − ys, ys, 0) is asymptotically stable provided

1

τ

∫ τ

0

m2(s̃ − ys)

a2 + (s̃ − ys)
dl < 1

and is unstable if

1

τ

∫ τ

0

m2(s̃ − ys)

a2 + (s̃ − ys)
dl > 1. (3.2)

Proof The local stability of periodic solution (s̃ − ys, ys, 0) may be determined by
considering the behavior of small amplitude perturbations of the solution. Define

x(t) = u(t) + s̃(t) − ys(t), y(t) = v(t) + ys(t), z(t) = w(t)

there may be written

⎛

⎝
u(t)
v(t)
w(t)

⎞

⎠ = �i (t)

⎛

⎝
u(0)

v(0)

w(0)

⎞

⎠ τi−1 < t < τi , (i = 1, 2, . . . , k)

where �i (t) satisfies

d�i

dt
=

⎛

⎜
⎜
⎜
⎜
⎝

−1− m1 ys(a1+b1 ys)

(a1+s̃−ys+b1 ys)2 −m1(s̃−ys)(a1 + s̃−ys)

(a1+s̃−ys+b1 ys)2 − m2(s̃−ys)

a2 + s̃−ys
m1 ys(a1 + b1 ys)

(a1 + s̃ − ys + b1 ys)2
m1(s̃ − ys)(a1 + s̃ − ys)

(a1 + s̃ − ys + b1 ys)2 − 1 0

0 0
m2(s̃ − ys)

a2 + s̃ − ys
− 1

⎞

⎟
⎟
⎟
⎟
⎠

�i (t)

and �i (τi−1) = I , the identity matrix. Hence the fundamental solution matrix is

�i (τi ) =

⎛

⎜
⎜
⎝

φ1i (τi ) φ2i (τi ) ∗
φ3i (τi ) φ4i (τi ) ∗∗

0 0 exp

(∫ τi

τi−1

(
m2(s̃ − ys)

a2 + s̃ − ys
− 1

)

dl

)

⎞

⎟
⎟
⎠ .

It is no need to give the exact form of (∗) and (∗∗) as it is not required in the analysis
that follows. The linearization of impulsive system (1.2) become

⎛

⎝
u(nτ+

i )

v(nτ+
i )

w(nτ+
i )

⎞

⎠ =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

⎛

⎝
u(nτi )

v(nτi )

w(nτi )

⎞

⎠
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We denote that

Mi =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ �i (τ ), (i = 1, 2, . . . , k).

Hence, we obtain the fundamental solution matrix M is

M = Mk · · · M2 M1 =

⎛

⎜
⎜
⎝

φ11(τ ) φ12(τ ) ∗
φ21(τ ) φ22(τ ) ∗∗

0 0 exp

(
∫ τ

0

(
m2(s̃(l) − ys(l))

a2 + s̃(l) − ys(l)
− 1

)

dl

)

⎞

⎟
⎟
⎠

The eigenvalues of the matrix M are µ3 = exp(
∫ τ

0 (m2 ys(l) − 1)dl) and the eigen-
values µ1, µ2 of the following matrix

(
φ11(τ ) φ12(τ )

φ21(τ ) φ22(τ )

)

.

The µ1, µ2 are also the multipliers the locally linearizing system of system (2.1)
provided with m > m∗

1 at the asymptotically stable periodic solution (s̃ − ys, ys),
according to Theorem 2.1, we have that µ1 < 1, µ2 = µ < 1.

If 1
τ

∫ τ

0
m2(s̃(l)−ys (l)))
a2+s̃(l)−ys (l)

dl < 1, then the multiplier µ3= exp
( ∫ τ

0

(
m2(s̃(l)−ys (l)))
a2+s̃(l)−ys (l)

−1
)

dl
)

< 1, the boundary periodic solution (s̃ − ys, ys, 0) of system (1.2) is locally
asymptotically stable.

If 1
τ

∫ τ

0
m2(s̃(l)−ys (l)))
a2+s̃(l)−ys (l)

dl > 1, then the multiplier µ3 = exp
( ∫ τ

0

(
m2(s̃(l)−ys (l)))
a2+s̃(l)−ys (l)

− 1
)

dl
)

> 1, the boundary periodic solution (s̃ − ys, ys(t), 0) of the system (1.2) is unsta-
ble. We complete the proof. ��
Theorem 3.2 If (s̃ − zs, zs) is a positive asymptotically stable τ -periodic solution of
system (2.1), then (s̃ − zs, ys, 0) is asymptotically stable provided

1

τ

∫ τ

0

m1(s̃ − zs)

a1 + s̃ − zs
dl < 1

and is unstable if

1

τ

∫ τ

0

m1(s̃ − zs)

a1 + s̃ − zs
dl > 1. (3.3)

What we are really interested in is the existence and stability of a strictly positive
τ -periodic solution of system (1.2). Thus, in the following theorem, we assume inequal-
ities (3.2) and (3.3) hold. In order to investigate the dynamical behavor of the predator
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of system (1.2), we add the first, second and third equations of it and take variable
changes s = x + y + z, then we obtain the following system

{
ds
dt = −s, t �= nτ + τi , (i = 1, 2, . . . , k)

s(t+) = s(t) + pi , s(0) > 0, t = nτ + τi , (i = 1, 2, . . . , k).

By the Lemma 2.1, the following lemma is obvious.

Lemma 3.1 Let (x(t), y(t), z(t)) be any solution of system (1.2) with X (0) > 0, then

lim
t→∞ |x(t) + y(t) + z(t) − s̃(t)| = 0.

By Lemma 3.1, our attention will mostly focus on the related model:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dy

dt
= m1(s̃ − y − z)y

a1 + s̃ − y − z + b1 y
− y,

dz

dt
= m2(s̃ − y − z)z

a2 + s̃ − y − z + b2z
− z,

y0 > 0, z0 > 0, y0 + z0 ≤ s̃(0).

(3.4)

We first prove the following Lemma.

Lemma 3.2 Consider

(a) u̇ = f (t, u) and (b) v̇ = f (t, v).

Let f (t, u), g(t, v) : R × R → R be sufficiently smooth so that solutions to initial
value problems exist uniquely and are continuable for t ≥ 0. Suppose y∗(t) and z∗(t)
are attracting τ -periodic solutions of (a) and (b), respectively, i.e., any solution u(t)
of (a) and v(t) of (b) satisfy

lim
t→∞ |u(t) − u∗(t)| → 0 and lim

t→∞ |v(t) − v∗(t)| → 0.

Then if f (t, ·) > g(t, ·), it follows that u∗(t) > v∗(t) for all t.

Proof Case 1. If there exists t0 such that u∗(t0) > v∗(t0), then u∗(t0) > v∗(t0) for all
t > t0. For otherwise let t1 = sup{t∗|u∗(t) > v∗(t)} for all t > t0 and t < t∗. Then
u̇∗(t1) = v̇∗(t1) and u∗(t) > v∗(t) for all t ∈ [t0, t1). So u̇∗(t1) ≤ v̇∗(t1). However,
u̇∗(t1) − v̇∗(t1) = f (t1, u∗(t1)) − g(t1, v∗(t1)) > 0. This is a contradiction. Further,
because u∗ and v∗ are τ -periodic, then u∗(t) > v∗(t) for all t .

Case 2. If there exists t0 such that u∗(t0) = v∗(t0), then by hypothesis there must
be t1 > t0 and near to t0 such that u∗(t1) > v∗(t1). By Case 1, this is a contradiction.

Case 3. Let u∗(t) < v∗(t) for all t . Suppose v∗(t0) = max0≤t≤τ v∗(t) and let u(t)
be the solution of (a) satisfying u(t0) = v∗(t0). Then similarly to the previous case,
u(t) > v∗(t) for all t > t0. Denote d = dist (u∗, v∗) = inf0≤t≤τ |u∗(t) − v∗(t)| > 0.

From the assumption u∗(t) < v∗(t), we have u(t)−u∗(t) > v(t)−v∗(t) ≥ d > 0.
This is a contradiction because u∗(t) is the attracting solution of (a) and the Lemma
3.2 is proved. ��
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Lemma 3.3 System (3.4) has at least one positive τ -periodic solution provided
inequalities (3.2) and (3.3) hold.

Proof Step 1. Condition (3.2) guarantees that

dy

dt
= m1(s̃ − zs − y)y

a1 + s̃ − zs − y + b1 y
− y (y0 ≤ s̃(0) − zs(0))

has a unique positive τ -periodic solution y∗∞(t) which is globally attracting. Condition
(3.3) guarantees that

dz

dt
= m2(s̃ − ys − z)z

a2 + s̃ − ys − z + b2z
− z (z0 ≤ s̃(0) − ys(0))

has a unique positive τ -periodic solution z∗∞(t) which is globally attracting.
By Lemma 3.2, we know that ys(t) > y∗∞(t) and zs(t) > z∗∞(t) for all t ≥ 0.

Step 2. Condition 1
τ

∫ τ

0
m1(s̃−z∗∞)

a1+s̃−z∗∞
dl > 1

τ

∫ τ

0
m1(s̃−zs )
a1+s̃−zs

dl > 1 guarantees that

dy

dt
= m1(s̃ − z∗

1 − y)y

a1 + s̃ − z∗
1 − y + b1 y

− y (y0 ≤ s̃(0) − z∗
1(0))

has a unique positive τ -periodic solution y∗
1 (t) which is globally attracting. By

Theorem 3.3, we know that

ys(t) > y∗
1 (t) > y∗∞(t), for all t ≥ 0.

Step 3. Condition 1
τ

∫ τ

0
m2(s̃−y∗

1 )

a2+s̃−y∗
1

dl > 1
τ

∫ τ

0
m2(s̃−ys )
a2+s̃−ys

dl > 1 guarantees that

dz

dt
= m2(s̃ − y∗

1 − z)z

a2 + s̃ − y∗
1 − z + b2z

− z (z0 ≤ s̃(0) − y∗
1 (0))

has a unique positive τ -periodic solution z∗
1(t) which is globally attracting. By Theo-

rem 3.3, we know that

zs(t) > z∗
1(t) > z∗∞(t), for all t ≥ 0.

Step 4. Consider

dy

dt
= m1(s̃ − z∗

1 − y)y

a1 + s̃ − z∗
1 − y + b1 y

− y (y0 ≤ s̃(0) − z∗
1(0)).

Similarly, there exists a unique positive globally attracting τ -periodic solution y∗
2 (t)

satisfying

ys(t) > y∗
1 (t) > y∗

2 (t) > y∗∞(t), for all t ≥ 0.
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Step 5. Consider

dz

dt
= m2(s̃ − y∗

1 − z)z

a2 + s̃ − y∗
1 − z + b2z

− z (z0 ≤ s̃(0) − y∗
1 (0))

and obtain a similar solution z∗
2(t) satisfying zs(t) > z∗

2(t) > z∗
1(t) > z∗∞(t) for all

t ≥ 0.
Step 6. According to the proofs in steps 1 and 5 above, we may construct simi-

lar related equations giving two monotone sequences {y∗
n (t)} and {z∗

n(t)} which are
positive τ -periodic functions satisfying

s̃(t) > ys(t) > y∗
1 (t) > · · · > y∗

n (t) > y∗
n+1(t) > · · · > y∗∞(t)

and

s̃(t) > zs(t) > · · · > z∗
n+1(t) > z∗

n(t) > · · · > z∗
1(t) > z∗∞(t)

for all t ≥ 0.
Step 7. From the previous steps, there exist functions y∗(t) and z∗(t) defined on

[0,∞) such that

lim
t→∞ y∗

n (t) = y∗(t) and lim
t→∞ z∗

n(t) = z∗(t) for all t ≥ 0.

Furthermore, y∗(t) and z∗(t) are τ -periodic functions because

y∗(t + τ) = lim
t→∞ y∗

n (t + τ) = lim
t→∞ y∗

n (t) = y∗(t),
z∗(t + τ) = lim

t→∞ z∗
n(t + τ) = lim

t→∞ z∗
n(t) = z∗(t). ��

By the τ -periodicity in t and the boundedness of the right-hand sides of all the
equations constructed above, it follows that the derivatives of the members of the
sequences {yn(t)} and {zn(t)} are bounded in [0,∞); that is,{yn(t)} and {zn(t)} are
uniformly bounded and equicontinuous. Then by virtue of Arzela-Ascoli’s lemma
[18], for any compact subinterval of [0,∞), there exist subsequences of {yn(t)} and
{zn(t)} which converge uniformly to y∗(t) and z∗(t), respectively, on this subinterval.
Thus y∗(t) and z∗(t) are continuous. By the monotonicity of these sequences, we see
that the convergences given by (4.5) are uniform on any compact subinterval of [0,∞).
Hence, by Dini’s theorem [19], y∗(t) and z∗(t) are continuously differentiable and

dy∗

dt
= m1x∗y∗

a1 + x∗ + b1 y∗ − y∗,
dz∗

dt
= m2x∗z∗

a2 + x∗ + b2z∗ − z∗.

The variational system about the positive τ -periodic solution (y∗, z∗) of system (3.4) is
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d�

dt
=

⎛

⎜
⎝

m1
a1 + x∗ + b1 y∗ {x∗ − y∗ − (b1 − 1)x∗ y∗

a1 + x∗ + b1 y∗ } m1u∗(a1 + b1 y∗)

(a1 + x∗ + b1 y∗)2

m2z∗(a2 + b2z∗)

(a2 + x∗ + b2z∗)2
m2

a2 + x∗ + b2v∗
{

x∗ − z∗ − (b2 − 1)x∗z∗
a2 + x∗ + b2z∗

}

⎞

⎟
⎠ �.

Let

Q(t) =
(

y∗(t) 0
0 −z∗(t)

)

.

The change of variable � = Q−1� gives

d�

dt
=

⎛

⎜
⎜
⎝

−m1 y∗(a1 + b1x∗ + b1 y∗)
(a1 + x∗ + b1 y∗)2

m1z∗(a1 + b1 y∗)
(a1 + x∗ + b1 y∗)2

m2 y∗(a2 + b2z∗)
(a2 + x∗ + b2z∗)2 −m2z∗(a2 + b2x∗ + b2z∗)

(a2 + x∗ + b2z∗)2

⎞

⎟
⎟
⎠ � := A(t)�. (3.5)

We know that the local stability of (y∗, z∗) is the same as the stability of (0, 0) in
Eq. (3.6). For any fixed t , the eigenvalues of A(t) satisfy λ1(t) + λ2(t) < 0 and
λ1(t)λ2(t) > 0, then λ1(t) and λ2(t) are negative or have negative real part. Hence the
Floquet characteristic multipliers of Eq. (3.6) have moduli less than 1 under inequal-
ities (3.2) and (3.3).

In following, we are able to show the asymptotic stability of the τ -periodic solution
(x∗, y∗, z∗) := (s̃ − y∗ − z∗, y∗, z∗) to be global under inequalities (3.2) and (3.3).
Lemma 3.1 implies that (x∗, y∗, z∗) is globally stable with respect to system (1.2)
provided that (y∗, z∗) is globally stable with respect to system (3.4). In the following,
we are going to show that (y∗, z∗) is a globally stable solution of system under the
condition that inequalities (3.2) and (3.3)hold.

Denote by S = (S1, S2) the τ -periodic Poincar é mapping generated by system
(3.4). It is well known that S is a compact operator and every τ -periodic solution
of system (3.4) corresponds to a fixed point of S. Clearly, (0, 0), (ys, 0) and (0, zs)

are all of the τ -periodic solutions of system (3.4) on the boundary of R2+. We de-
note by a∗ the fixed points of S in int (R2+). For simplicity of notation, we further
denote the fixed points of S on the boundary R2+ by O, ys and zs , respectively.
The indices of all fixed points of S in the cone R2+ are calculated in the following
theorem.

Theorem 3.3 Assume inequalities (3.2) and (3.3) hold. Then the following are true.
(i) index(S) = 1 where iindex(S) = deg(I −S, O) which means the Brouwer degree
in the cone R2+;
(ii) index(S, O) = 0;
(iii) index(S, ys) = index(S, zs) = 0;
(iv) index(S, a∗) = 1.

Proof Clearly, system (3.4) is point dissipative and S is compact. It follows from
[20] or [21] that there exists a connected global attractor A of S in R2+. Hence, all
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fixed points of S in R2+ must be contained in A. Without loss of generality, we suppose
A ⊂ [0, K ]×[0, K ] for certain constant K > 0. Recall that system (3.4) is of the form

⎧
⎪⎪⎨

⎪⎪⎩

dy

dt
= m1(s̃ − y − z)y

a1 + s̃ − y − z + b1 y
− y,

dz

dt
= m2(s̃ − y − z)z

a2 + s̃ − y − z + b2z
− z.

As a result, we can choose constant K large enough to guarantee that [0, K ] × [0, K ]
is not only globally attractive but also positively invariant. Clearly, for any constant
K̂ > K , [0, K̂ )×[0, K̂ ) is positively invariant. Let 
 = [0, K +1)×[0, K +1) ⊂ R2+.
Clearly, 
 is open in R2+ with relative boundary ∂
 = {(y, z) ∈ R2+ : |(y, z)|sup =
K + 1}. By the excision property of topological degree, it follows that

deg(I − S, O) = deg(I − S,
, O).

Define a homotopy

H(t) = I − t S : 
 → R2.

Claim H(t) is 
-admissible for all t ∈ [0, 1], i.e., O∈(I − t S)(∂
). It suffices to
show that for any (y, z) ∈ ∂
, (I − t S)(y, z) �= (0, 0). Clearly, when t = 0, then
I − t S = I and (0, 0)∈∂
. When t = 1, then I − t S = I − S, and since we have
supposed that all fixed points of S in R2+ are contained in A ⊂ [0, K ]× [0, K ], hence
(0, 0)∈(I − S)(∂
). Similarly, for any t ∈ (0, 1), (0, 0)∈(I − t S)(∂
) since 
 is
positively invariant. This completes the proof of our claim.

Thus, by homotopy invariance, we have

deg(I − S,
, O) = deg(H(1),
, O)

= deg(H(0),
, O)

= deg(I,
, O) = 1,

where the last identity is due to the normalization property of topological degree.
Hence, deg(I − S, O) = 1 and index(S) = 1.

(ii) We now prove that index index(S, O) = 0. By definition, we know that

PO = {(y, z) ∈ R2 : O + t (y, z) ∈ R2+ for some t > 0} = R2+,

and

SO = {(y, z) ∈ PO : −(y, z) ∈ PO}
= {(y, z) ∈ R2+ : −(y, z) ∈ R2+}
= {O}.
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The variational system about (0, 0) of system (3.4) is

d�

dt
=

(
m1 s̃(t)

a1+s̃(t) − 1 0

0 m2 s̃(t)
a2+s̃(t) − 1

)

�. (3.6)

By a standard argument, one can easily verify that

DS(O)(y, z) =
(

y exp

(∫ τ

0

[
m1s̃(t)

a1 + s̃(t)
− 1

]

dt

)

,

z exp

(∫ τ

0

[
m2s̃(t)

a2 + s̃(t)
− 1

]

dt

))

, (3.7)

where DS(O) is the Frechét derivative of S at O . Furthermore, it follows from
inequalities (3.2) and (3.3) that

r1 := exp

(∫ τ

0

[
m1s̃(t)

a1 + s̃(t)
− 1

]

dt

)

> 1,

r2 := exp

(∫ τ

0

[
m2s̃(t)

a2 + s̃(t)
− 1

]

dt

)

> 1. (3.8)

Now one can easily see that DS(O) has property α (see in Appendix A). Indeed, by
definition, it suffices to choose certain (y, z) ∈ R2+\{O} such that, for some t0 ∈ (0, 1).
t0 DS(O)(y, z) = (y, z), i.e., (t0r1 y, t0r2z) = (y, z). Clearly, we can choose any (y, 0)

with y > 0 and t0 = 1/r1 ∈ (0, 1) since r1 > 1. Furthermore, clearly I − DS(O)

is invertible and O(0, 0) is an isolated fixed point of S. Therefore, it follows from
Theorem A(i) (see in Appendix A) that index(S, O) = 0.

(iii) We are going to apply Theorem B (see in Appendix B) to show that

index(S, ys) = index(S, zs) = 0.

It suffices to show index(S, ys) = 0. Similarly, one can show index(S, zs) = 0.
Replace A1, A2 in Theorem B (see in Appendix B) by S1, S2, respectively. One can
easily verify that all conditions required in Theorem B are satisfied here. Clearly, we
have

T = {y ∈ R+ : y = S1(y, 0)} = {0, ys},

where T is defined in Theorem B. Furthermore, it follows from Eqs.(3.8) and (3.9)
that r2 > 1 is the only eigenvalue of DS2(0, 0). The variational system about (ys, 0)

of system (3.4) is

d�

dt
=

(
m1(s̃(t)−ys(t)

a1+s̃(t)−ys(t)+b1 ys (t)
− 1 − m1(a1+b1 s̃(t))ys(t)

(a1+s̃(t)−ys (t)+b1 ys (t))2 0

0 m2(s̃(t)−ys (t))
a2+s̃(t)−ys(t)

− 1

)

�.
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Clearly, r3 := exp(
∫ τ

0 [m2(s̃(t)−ys (t))
a2+s̃(t)−ys (t)

− 1]dt) is the only eigenvalue of DS2(ys, 0) and
r3 > 1 because of inequality (3.2). Therefore, it follows from Theorem B(i) that
index(S, ys) = 0. Analogously, it follows from inequality (3.3) that index(S, zs)=0.

(iv) For any fixed points a∗ ∈ int (R2+) of S, from the previous assumption, it
follows that ρ(DS(a∗)) under inequalities (3.2) and (3.3). Note that both(3.2) and
(3.3) are independent of a∗ itself. According to [[22], Lemma 2(c)], DS(a∗) does not
have property. Again by Theorem A(ii), one can easily see that index(S, a∗) = 1. We
complete the proof. ��
Theorem 3.4 Assume inequalities (3.2) and (3.3) are valid. Then, there exists a strictly
positive τ -periodic solution of system (1.2) which is globally asymptotically stable.

Proof Since system (3.4) generates a discrete monotone dynamical system {Sm}∞m=0,

we need only to prove the uniqueness of a strictly positive τ -periodic solution of
system (3.4). It follows from a simple compactness argument that there are at most
finitely many fixed points of S in int (R2+). Let them be {y∗

i : 1 ≤ i ≤ l}, where l ∈ Z .
From Theorem 3.3, we have index(S, y∗

i ) = 1, index(S, O) = 0, index(S, ys) = 0,
index(S, zs) = 0 and index(S) = 1. Hence, by the additivity of the fixed point index,
it follows that

1 = index(S) = index(S, O) + index(S, ys)

+index(S, zs) +
l∑

i=1
index(S, y∗

i ) = l.

This implies the uniqueness. Using Lemma 3.2, system (1.2) has a strictly positive
τ -periodic solution which is globally asymptotically stable. Therefore, the structure
of the global attractor of system (1.2) is very simple, namely, a positive τ -periodic
solution. The proof is completed. ��

4 Discussion

In this paper, we discussed the dynamical behavior for microbial organisms competing
in a chemostat with Beddington–DeAngelis growth rates, and with periodic impulsive
nutrient input. In its simplest form, the system approximates conditions for microbial
organisms growth in lakes, where the limiting nutrients such as silica and phosphate
are supplied from streams draining the watershed. As seasons change, stream drainage
patterns change causing variations in the supply of nutrients of lakes. We all know
that nutrients are inputted into lakes when rain is falling. In fact, raining is not con-
tinuous. It occurs seasonally or in regular pulses. Thus, it is natural to describe this
case in impulsive differential equations. For the system, we derived criteria for the
coexistence or non-coexistence of the competing species.

In the following, we analyze model (1.2) numerically. In system (1.2), set

m1 = 10, a1 = 0.8, b1 = 0.1, a2 = 1.2, b2 = 0.7, τ1 = 0.6, τ = τ2 = 1.

We increase m2 from 11 to 19. The influences of m2 may be documented by
stroboscopically sampling some of the variables over a range of m1 values. We
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numerically integrated system (1.2) for 300 pulsing cycles at each value of m2. For
each m2, we plotted the last 100 measures of the substrate x , prey y and predator z.
Since we sampled at the forcing period, periodic solutions of period τ appear as fixed
points, periodic solutions of period 2τ appear as two cycles, and so forth. The resulting
bifurcation diagrams (Fig. 1) clear show that: with increasing m2 from 11 to 19, when
m2 < mmin ≈ 11.46, the predator z is extinct and (s̃ − ys, ys, 0) is globally asymptot-
ically stable (Fig. 2 m2 = 11.2); when m1 > mmax ≈ 18.21, the predator z is extinct
and (s̃ − zs, 0, zs) is globally asymptotically stable; when mmin < m2 < mmax , the
predators y and z will coexist and (s̃ − y∗ − z∗, y∗, z∗) is globally asymptotically
stable (Fig. 3 m2 = 16.8).

Fig. 1 Bifurcation diagrams of Poincar é section for the substrate x , the predators y and z in system (1.2)
under m1 = 10, a2 = 1.2, a1 = 0.8, b2 = 0.7, b1 = 0.1, τ1 = 0.6, τ = τ2 = 1 and m2 is varied in
[11,19]

Fig. 2 Extinction of z with m2 = 11.2. (a) is the complete trajectories (x(t), y(t), z(t)) over the time
interval from t = 1 to t = 30, (b) are time series of y and z, respectively
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Fig. 3 Coexistence of y and z with m2 = 16.8. (a) is the complete trajectories of τ -periodic solution over
the time interval from t = 100 to t = 120, (b) are time series of y and z, respectively

Appendix A

Let (E, P) be an ordered Banach space with positive normal cone P. Following [23],
for y ∈ P , define

Pz = {z ∈ E : z + t y ∈ P f or some t > 0}.

and

Sz = {y ∈ P̄z : −y ∈ P̄z}.

Let a be a fixed point of some compact operator T : P → P , and denote by L the
Frechét derivative of T at a. We say that L has property α at a if there exists t ∈ (0, 1)

and z ∈ Pa\Sa such that z − tL(z) ∈ Sa . We state a general result of Dancer [23] on
fixed point index with respect to the positive cone P (see also [24,25]).

Theorem A (i) If I − L is invertible on E, and L has property α on P̄a, then
indexP (T, a) = 0.

(ii) If I − L is invertible on E, and L does not have property α on P̄a, then
indexP (T, a) = (−1)σ , where σ is the sum of the algebraic multiplicities of the
eigenvalues of L whose moduli are greater than 1.

(iii) If I −L is not invertible on E but K er(I −L)∩P̄a = ∅ then indexP (T, a) = 0.

Appendix B

Suppose E1 and E2 are ordered Banach spaces with positive cones C1 and C2,
respectively. Let E = E1 ⊕ E2 and C = C1 ⊕ C2 . Then clearly E is an ordered
Banach space with positive cone C . Let 
 be an open set in C containing O and
Ai : 
 → Ci be completely continuous operators, (i=1, 2). Denote by (u, v) a general
element in C with u ∈ C1 and v ∈ C2. Let A : 
 → C be defined by
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A(u, v) = (A1(u, v), A2(u, v)).

Also we define

C2(ε) = {v ∈ C2 : ‖v‖E2 < ε}.

The following general result of Dancer and Du [[26],Theorem 2.1] on degree calcu-
lation is crucial for our applications.

Theorem B Suppose U ⊂ C1 ∩ 
 is relatively open and bounded, and

A1(u, 0) �= u for u ∈ ∂U,

A2(u, 0) ≡ u for u ∈ U .

Suppose A2 : 
 → C2 extends to a continuously differentiable mapping of a neigh-
borhood of 
 into E2, C2 is dense in E2, and T = {u ∈ U : u = A1(u, 0)}. Then the
following are true.

(i) degC (I − A, U ×C2(ε), 0) for ε > 0 small, if for any u ∈ T , the spectral radius
r(A2′(u, 0)|C2) > 1 and 1 is not an eigenvalue of A2′(u, 0)|C2) corresponding to a
positive eigenvector.

(ii) degC (I − A, U × C2(ε), 0) = degC1(I − A1|C1, U × C2(ε), 0) for ε > 0
small, if for any u ∈ T , the spectral radius r(A2′(u, 0)|C2) < 1.
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